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Abstract— A control scheme based on adaptive visual servoing and direct force control is proposed for robot
manipulators to perform interaction tasks on smooth surfaces. The constraint surface, as well as the parameters
of the camera, are considered to be uncertain. A fixed uncalibrated camera is used for position control, while
a force sensor mounted on the robot wrist is used for force regulation. A reorientation strategy is developed
to keep the end-effector orthogonal to the contact surface. Experimental results are presented to illustrate the
performance of the proposed scheme.
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1 Introduction

Autonomy and flexibility are fundamental require-
ments for the robots to operate in unstructured envi-
ronments, where the physical or geometrical descrip-
tion of the workspace is partially unknown. One way
to increase the robot flexibility in practical tasks is to
integrate a number of different sensors into the robot
system. Cameras are useful robotic sensors since they
mimic the human sense of vision and allow the robots
to locate and inspect the objects without contact. On
the other hand, force sensors are useful to control
the contact force or to monitor the interaction forces
in order to avoid damages in the robot end-effector
and manipulated object. An interesting solution is to
combine visual servoing and force control in a hybrid

control scheme so that the advantages of each sensing
mode are simultaneously achieved in a given interac-
tion task.

In this framework, some hybrid controllers were
designed in order to use the information from vi-
sion and force sensors to control the robot configura-
tion (position and orientation) during the interaction.
Hosoda et. al. [1] proposed a hybrid control algorithm
that uses on-line estimators for the constraint surface
geometry and the camera-robot system parameters,
but the stability of the overall closed-loop system is
not proven. A method employing a hybrid control
based on vision and force was developed by Pichler
and Jagersand [2] to estimate the constraint geometry
during the manipulation task. However, an explicit
solution for the orientation of the end-effector on the
contact surface was not presented. Baeten and Schut-
ter [3] proposed a hybrid control method using vision
and force to execute planar contour following tasks at
corners. In this approach, a sensors fusion is realized
based on the combination of commanded velocities in
the task frame, but the camera needs to be calibrated
with respect to the robot frame. Recently, a hybrid
vision and force controller was proposed by Zhao and
Cheah in [4] for robot manipulators with uncertain dy-
namics, kinematics and constraint surface. The con-
trol algorithm is based on an adaptive law with force
and gravity regressors. However, the uncertainties in
the camera model were not rigorously taken into ac-
count in the theoretical analysis.

In this paper, one considers the hybrid vision and
force control problem for robot manipulators using a
fixed uncalibrated camera and a force sensor. A con-
trol method is proposed to combine adaptive visual
servoing and direct force control in the presence of
rigid smooth surfaces with unknown geometry and un-
certainties in the camera parameters. The visual ser-
voing strategy is based on a symmetrization method
via factorization of the control matrix to solve the mul-
tivariable adaptive control problem. The force control
strategy is based on an integral action algorithm, due
to its well-known robustness with respect to the mea-
surement time delay and capability of removing the
steady-state force error.

In order to solve the interaction problem on un-
known surfaces, a method is used to estimate the con-
straint geometry through the force and displacement
measurements [5]. Moreover, a method is presented to
reorientate the end-effector on the surface during the
task execution through measured contact force. The
orientation control uses the unit quaternion formula-
tion that is free of singularities and computationally
efficient [6]. This paper is a follow-up of [7], where
only simulation results were included. Here, experi-
mental results are presented to illustrate the practical
performance and viability of the proposed scheme.

2 Kinematic Control

In this section, one considers the kinematic control
problem. Here, one assumes that: (A1) the robot
kinematics is known; (A2) the robot dynamics is neg-

ligible. This last assumption is applied to most com-
mercial robots with high gear ratios and/or when the
task motions are not so fast.

Let x = [x1 x2 x3]
T be the position of the arm

tip and q =[qs qT
v ]T be the unit quaternion represen-

tation for the end-effector orientation, where qs ∈ IR
and qv ∈ IR3 are the scalar and vectorial part of the
unit quaternion respectively. In this context, the end-
effector configuration r =[x q]T ∈ IRm is given by the
forward kinematics map r=k(θ), where θ∈ IRn is the
manipulator joint angle vector.

The differential kinematics equation can be ob-
tained as the time derivative of the forward kinematics



given by

ṙ =

»

ẋ
q̇

–

= Jk(θ) θ̇ , (1)

where Jk(θ) = ∂k(θ)
∂θ

∈ IRm×n is the analytical Jaco-
bian. The end-effector velocity v =[ẋ ω]T , composed
by the linear velocity ẋ and the angular velocity ω, is
related to ṙ by

v =

»

ẋ
ω

–

=

»

I 0
0 2Jq(q)

– »

ẋ
q̇

–

= Jr ṙ , (2)

where Jq(q) = [−qv qsI +(qv×) ] and Jr is the rep-
resentation Jacobian. Then, substituting (1) in (2)
gives

v = Jr Jk θ̇ = J θ̇ , (3)

where J ∈ IRn×n is the manipulator Jacobian. Thus,
from (3) and considering θ̇i as the control input ui (i=
1, ..., n) one obtains the following control system: v=
J(θ) u. A cartesian control law vc can be transformed
to joint control signals by using

u = J−1(θ) vc = J−1(θ)

»

vp

vq

–

, (4)

provided that vc does not drive the robot to singu-

lar configurations. Therefore, from (3) and (4) one
has that vp = ẋ and vq = ω. Note that, vp and vq

are designed to control the end-effector position and
orientation respectively.

2.1 Position Control

Consider the control problem of tracking the desired
time-varying reference xd(t) from the actual position
x. Then, the control goal is given by

x → xd(t) , ep = xd − x → 0 , (5)

where ep is the position error. Thus, considering a
feedforward and proportional control law given by
vp = ẋd+Kp ep one has that the position error dynam-
ics is governed by ėp + Kp ep =0. Hence, by a proper
choice of Kp as a positive definite matrix, ep → 0 ex-
ponentially as t→∞.

2.2 Orientation Control

Consider the control problem of driving the attitude
matrix R to a desired time-varying attitude Rd(t).
Then, the control goal is given by

R → Rd(t) , Rφ =RT Rd → I , (6)

where Rφ is the error attitude matrix. Let eq =
[eqs eT

qv]T be the unit quaternion representation for
Rφ ∈ SO(3) and ėq = 1

2
JT

q (eq) ω̃ be the error propa-
gation equation [8], where ω̃ =(ωd−ω) and ωd is the
desired angular velocity. From the unit quaternion
formulation eq = [1 0]T if and only if R and Rd are
aligned.

The control design uses the Lyapunov function
candidate given by 2V = (eqs − 1)2 + eT

qv eqv. Dif-
ferentiating V with respect to time along the system
trajectories one has that V̇ = −eT

qv ω̃. Thus, setting
ω̃ = Ko eqv and considering Ko as a positive definite
matrix, implies that V̇ is negative semidefinite. Then,
the orientation control law has the form

vq = ωd + Ko eqv . (7)

Since V is continuously differentiable, radially un-
bounded, positive definite and V̇ ≤ 0 over the entire
state space, by using the LaSalle’s theorem [9] one has
that all system trajectories converge to the largest in-
variant set Ω̄ in Ω= {(eqs , eqv) : V̇ =0}= {(eqs , eqv) :
eqv = 0}. In the invariant set one has that ω̃ = 0
and thus ėq = 0. The constraint e2

qs + e2
qv = 1 im-

plies that Ω̄= {(eqs , eqv) : eqs =1 , eqv =0} and hence
(eqs , eqv)=(±1 , 0) is a globally asymptotically stable
equilibrium.

2.3 Force Control

Consider the force control problem for a kinematic
robot. Here, one assumes that the control goal is to
regulate the measured contact force f to a desired
force fd along the normal vector of the constraint sur-
face, that is,

f → fd(t) , ef = fd − f → 0 , (8)

where ef is the force error. Similar to Hooke’s law

the contact force can be modeled by f =−ks (x3 − ls),
where ks is the spring elastic constant and ls is the
spring free length. Then, using a PI control law

vf =kp ef + ki

Z t

0

ef (τ ) dτ , (9)

one has that the force error dynamics is governed by
ëf +ks kp ėf +ks ki ef = 0 , where kp and ki are the
feedback gains. Hence, by a proper choice of kp and ki

as positive constants, ef →0 exponentially as t→∞.

3 Hybrid Control Scheme

The hybrid force and position control combines the
force and moment information with position or veloc-
ity data according to Mason’s concept [10] that defines
two complementary orthogonal subspaces in force and
movement. Thus, the force and position constraints
can be separately considered and the controllers are
not affected by mutual interferences. These con-
straints are specified in a proper coordinate system
for the task execution called the constraint frame and
denoted by Ēs.

From the selection matrices S ∈ IR3×3 and I−S,
which determine what degrees of freedom must be con-
trolled by force and movement, the control signals are
decoupled and the control laws for each subspace can
be independently designed in order to achieve simul-
taneously different force and position requirements for
a given task. Thus, the hybrid control law is given by

vh = vhf + vhp , (10)

where vhf and vhp are the decoupled control signals
acting respectively in the force and position subspaces,
such that

vhf = Res S RT
es vf , vhp = Res (I−S) RT

es vp .

Now, considering that the constraint surface in the
task space can be described by Φ(x) = 0, the con-
strained motion of the end-effector on the surface sat-
isfies D ẋ=0 , where D= ∂Φ

∂x
denotes the normal vector

of the surface. Thus, when the constraint geometry
is known the rotation matrix of the constraint frame
with respect to the tool frame, denoted by Res, can
be easily calculated.



4 Unknown Constraint Surface

Assuming that the manipulator interacts with un-
known contact surfaces, it is appropriate to present
a method to estimate the geometric parameters [6] of
the constraint and update the end-effector orientation
on the surface during the task execution.

4.1 Estimation of Constraint Geometry

In the hybrid control scheme one has to separate the
interaction control and motion control actions along
complementary directions of the task space. However,
to achieve this aim in an unstructured workspace one
has to find the geometry of the constraint surface and
its relationship with the frames of interest. Thus, the
decoupling of control variables can be executed in the
constraint space, where the task is naturally described
and the selection matrices have a diagonal form with
0 and 1 elements.

Then, one considers Ēs = [~e1 ~e2 ~e3] a fixed or-
thonormal frame in a contact point on the constraint
surface where ~ei (i = 1, 2) defines a tangent plane to
the surface. For a frictionless point contact the di-
rection of the contact force is normal to the surface.
Thus, based on the contact force ~f which is exerted by
end-effector on the surface, one defines ~e3 = ~f / ‖~f‖ as
an estimated normal vector of the constraint surface.

Let ~∆x be the end-effector displacement on the
constraint surface during the interaction, one defines
~e1 = ~∆x / ‖ ~∆x‖ as an estimated tangent vector along
the end-effector trajectory described on the surface.
Finally, since ~e1 and ~e3 are orthonormal vectors, the
vector ~e2 can be obtained from right-hand rule, that
is, ~e2 =~e3 × ~e1.

Tool

Surface
Contact

~ft

~fn
~f

~∆x

P

Figure 1: Tangential and normal forces in a contact
point on the surface.

However, when a frictional surface is consid-
ered, the contact force ~f has a tangential component
(Fig. 1). Here, one assumes that the only action of
tangential forces is due to the friction force and it
acts in the opposed direction of the end-effector dis-
placements. Then, the estimated normal vector of the
surface can be rewritten as ~e3 =(~f−~ft) / ‖~f − ~ft‖ , and
the tangential force, aligned with the movement direc-
tion, is given by ~ft =(~f · ~∆x)~e1. Hence, the constraint
frame Ēs can be expressed as

Ēs =

"

~∆x

‖ ~∆x‖

~f−(~f · ~∆x)
~∆x

‖ ~∆x‖

‖~f−(~f · ~∆x)
~∆x

‖ ~∆x‖
‖
×

~∆x

‖~∆x‖

~f−(~f· ~∆x)
~∆x

‖ ~∆x‖

‖~f−(~f· ~∆x)
~∆x

‖ ~∆x‖
‖

#

and the estimated orientation of the constraint frame
Ēs with respect to the tool frame Ēe is given by

R̂es = [ (~e1)e (~e2)e (~e3)e ] . (11)

4.2 End-effector Reorientation

Let f = [f1 f2 f3]
T ∈ IR3 be the components of the

contact force ~f exerted on the end-effector at a contact
point P on an unknown surface. Here, one considers
a point contact with friction and assumes that the
contact force is exerted in any direction within the
friction cone [6]. Therefore, contact loss or sliding on
the surface are precluded.

~xs

~xs~ys

~ys

~zs ~zs

~f ~f

f1 f2

f3 f3

αs βsαe βe

PP

Figure 2: Force components represented in the con-
straint frame.

Let αs and βs denote the angular deviations of
the contact force ~f with respect to the surface normal
defined as

αs =atan ( f1 /f3 ) , βs =atan ( f2 /f3 ) . (12)

Now, let αe and βe denote the angular deviations be-
tween the end-effector approach-axis with respect to
the contact force analogously defined, as shown in Fig-
ure 2. Note that, αe and βe are measurable from the
force sensor and that αs and βs can be obtained by
using (11). Then, to reorientate the end-effector along
the axis ~zs of the constraint frame, it is necessary to
cancel the deviation angles through the following ele-
mentary rotations

Rα =Rys
(α) , Rβ =Rxs

(−β) , (13)

where α = (αs +αe) and β = (βs +βe). The result-
ing rotation matrix is given by Ro = Rα Rβ and the
desired orientation can be obtained by Rd = Rbe Ro,
where Rbe is the rotation matrix of the tool frame with
respect to the base frame.

5 Visual Servoing

In this work, one uses the visual servoing to provide
closed-loop position control for the robot end-effector.
Let y = [y1 y2]

T be the end-effector position in the
image frame and yd be the desired trajectory for a
target feature fixed on the arm tip. Then, the control
goal can be described by

y → yd(t) , ev = yd − y → 0 , (14)

where ev is the image error. Here, one considers a
nonredundant planar manipulator, that is, m =n = 2
and hence the end-effector position in the robot frame
is given by x=[x1 x2]

T . Then, considering a monocu-
lar fixed CCD camera with optical axis nonperpendic-

ular to the robot workspace, the camera/workspace
transformation can be represented by [11]

y=Kv(x)x + r0 , (15)



with

Kv(x)=
f0

f0 + z(x)

»

−α1 0
0 −α2

–»

cos(φ) −sin(φ)
sin(φ) cos(φ)

–

,

where r0 is a constant term, which depends on the po-
sition of the camera frame with respect to the robot
frame, Kv is the high frequency gain matrix and con-
siders the camera orientation angle φ with respect
to the robot frame, f0 is the camera focal length,
z(x) is the depth from the camera plane to the robot
workspace (in general z(x)≫f0), and αi >0 (i = 1, 2)
are the scaling factors (pixels/mm).

5.1 Virtual Surface

Consider the visual servoing problem for a robot ma-
nipulator moving along a desired trajectory specified
on a virtual surface in the workspace. Then, a generic
3D surface can be described by z(x) = z0 +F (x , ν) ,
where z0 is a constant depth between the camera plane
and robot workspace; ν is a vector of constant param-
eters. Without loss of generality this work limits to
the case of locally flat surfaces given by

z(x)=z0 + ǫ (cT x) , (16)

where c=[a b]T and a, b∈ IR are parameters relative
to the surface slope with respect to the axes ~xc and ~yc

in the camera frame; ǫ is a sufficiently small parameter
relative to the depth variation in the robot workspace.

5.2 Control Problem

In this work, the cartesian control problem in the im-
age frame is described by

ẏ=G(x)vv , (17)

where vv = [v1 v2]
T and G(x) is an uncertain ma-

trix obtained from partial derivative of Kv(x) =
[ k1(x) k2(x) ], that is,

G(x)=Kv(x)+
∂k1(x)

∂x
x1 +

∂k2(x)

∂x
x2 (18)

and

g11(x) =
α1 f0

∆z2

»

∆z cos(φ) +
∂z(x)

∂x1
h1(x)

–

,

g12(x) =
α1 f0

∆z2

»

−∆z sin(φ) +
∂z(x)

∂x2
h1(x)

–

,

g21(x) =
α2 f0

∆z2

»

∆z sin(φ) +
∂z(x)

∂x1
h2(x)

–

,

g22(x) =
α2 f0

∆z2

»

∆z cos(φ) +
∂z(x)

∂x2
h2(x)

–

,

with ∆z = f0+z(x) , h1(x) = x1cos(φ)−x2sin(φ) and
h2(x) = x1sin(φ)+x2cos(φ). In order to simplify the
notation, the term x will be removed from G(x). Thus,
G(x)=G=[gij ] for i, j =1, 2.

5.3 Visual-Servoing MRAC

In the model reference adaptive control approach the
model can be specified by

ẏd =−Λyd + Λyr , (19)

where yr ∈ IR2 is the reference signal assumed uni-
formly bounded ∀t and yd ∈ IR2 is the desired trajec-
tory of the end-effector in the image plane. For the
sake of simplicity, one considers Λ=λI . One can eas-
ily modify the algorithm presented in [12] to introduce
the image error directly into the control law, even if
the adaptation is frozen.

From (17) and (19), it follows that the ideal con-
trol law is given by 1

v∗=λG−1 (yr − y) . (20)

Then, from image error ev = yd−y, one obtains the
following error system ėv =−λev − G vv + λ(yr − y) ,
that is

ėv =−λev + G ṽ , (21)

where ṽ = v∗ − vv and G = [gij ] for i, j = 1, 2.

5.4 Adaptation via SDU factorization

From the expression of v∗, one verifies that the usual
parameterization for the adaptive law would be

vv =PΦ (yr − y) , (22)

with PΦ ∈ IR2×2 being the matrix of adaptive param-
eters. However, as shown in [12], this leads to crucial
limitations about the prior assumptions on G, not ap-
plicable to the present problem (even when G is a con-
stant matrix). One possible solution is to use the SDU
factorization method proposed in [13]. This method
is based on the factorization G = Sv Dv Uv, where
Sv, Dv , Uv are respectively symmetric, diagonal and
upper triangular matrices. If g11 > 0 and det(G) > 0,
then Uv (and U−1

v ) can be chosen with unitary diag-
onal elements and Dv = I . Thus, it can be concluded
that there exists an upper triangular matrix T =U−1

v

such that (GT )=(GT )T =Sv >0 [14]. Then, one can
rewrite (21) as

ėv =−λev − Sv [T−1 vv − λS−1
v (yr − y)] .

Thus, the ideal control law is given by

v∗
1 = t12 v2 + λ det(G−1) (s22 ρv1 − g21 ρv2) ,(23)

v∗
2 = −λdet(G−1) (g21 ρv1 − g11 ρv2) , (24)

where t12 =(g21−g12)/g11, s22 =(g2
21+det(G))/g11 and

ρvi =yri−yi (i = 1, 2). Note that, it is not possible to
get linear parameterization for the laws (23) and (24),
since v∗

1 and v∗
2 involve the inverse of G. However,

one can use Taylor series approximation based on as-
sumption that the robot movements in the workspace
satisfy the condition |z0|>ǫ |cT x|. Thus, one can ne-
glect the high order terms from ǫ2 in the series expan-
sion. Hence, the control signal can be parameterized
as

v1 =ΘT
1 w1 , v2 =ΘT

2 w2 , (25)

where Θ1 and Θ2 are the parameters vectors; w1 and
w2 are the regressors vectors given by

w1 = [v2 ρv1 ρv2 v2 y1 v2 y2 ρv1 y1 ρv1 y2 ρv2 y1 ρv2 y2] ,

w2 = [ρv1 ρv2 ρv1 y1 ρv2 y2 ρv2 y1 ρv2 y2] ,

1Note that, the equations (4) and (15)-(20) can be ex-
pressed as a resolved-rate motion control law. Substituting
yr from (19) into (20) gives v∗ =G−1[ẏd+λ(yd−y)]. Then,
from (4), one has that u=(GJ(θ))−1[ẏd+λ(yd−y)], where
Jv =GJ(θ) is the image Jacobian [11].



and with ṽT =[Θ̃T
1 w1 Θ̃T

2 w2] one has that

ėv =−λev+Sv ṽ ,

where Θ̃i =Θi−Θ∗
i for i = 1, 2. From the analysis of

the error dynamics, the adaptation laws for Θ̃1 and
Θ̃2 are given by

˙̃Θ1 =Θ̇1=− γ1 ev1 w1 , ˙̃Θ2 =Θ̇2=− γ2 ev2 w2 . (26)

5.5 Stability Analysis

Since Sv is state dependent, one assumes that: (A3)
P , S−1

v satisfies 1
2
Ṗ −λP < λ0I for some positive

λ0. Then, the gradient law Θ̇i (i = 1, 2) makes the
derivative of the Lyapunov function candidate 2V =
eT

v S−1
v ev+γ−1(Θ̃T

1 Θ̃1+Θ̃T
2 Θ̃2) negative semidefinite,

since V̇ =−λ0 eT
v ev ≤0.

Thus, Θ̃i and ev are uniformly bounded and con-
sequently ėv is uniformly bounded. Applying the
usual argument based on Barbalat’s lemma [9], one
concludes that ev ∈L2 ∩ L∞ and ev(t)→ 0 as t→∞,
which proves global stability and asymptotic conver-
gence of the tracking error.

6 Hybrid Vision-Force Control

For the hybrid vision and force control problem, a
cartesian control law can be transformed to joint con-
trol signals by using

u = J−1(θ) vc = J−1(θ)

»

vh

vq

–

, (27)

where vh is given by (10) and

vhf = R̂es S R̂T
es vf , vhp = R̂es (I−S) R̂T

es vv .

The closed-loop stability analysis uses the Lyapunov
function candidate given by

2V =eT
f kf ks ki ef + ėT

f kf ėf + (eqs − 1)2 + eT
qv eqv +

eT
v S−1

v ev + γ−1 (Θ̃T
1 Θ̃1+Θ̃T

2 Θ̃2) .

From (A3), the time derivative of V along the trajecto-
ries of the closed-loop system is negative semidefinite,
that is,

V̇ =−ėT
f kf ks kp ėf −eT

qv Ko eqv−λ0 eT
v ev ≤ 0 .

Thus, ef , ėf , eqs, eqv, Θ̃i and ev are uniformly
bounded and consequently ëf , ėqv and ėv are uni-
formly bounded. Applying the usual argument based
on Barbalat’s lemma [9], one concludes that ef → 0,
eqv →0 and ev →0 as t→∞, which proves the global
stability of the overall system.

7 Experimental Results

This section describes some preliminary experimental
results obtained by implementing the proposed hybrid
controller on a 6-DOF Zebra Zero robot manipulator
(Integrated Motions, Inc.). The robot task involves
the visual tracking of the target feature, while the
end-effector tip exerts a controlled contact force on
an unknown planar surface. The tool consists of a
rigid cylinder coupled to the robot wrist by means of
a linear spring with elastic constant given by ks =640

[N/m], aligned with the cylinder axis. This avoids
hard impacts that could damage the JR3 force-torque
sensor (JR3, Inc.) or the contact surface during the
interaction. A KP-D50 CCD camera (Hitachi, Ltd.)
with a lens of length f0 = 6 [mm] was mounted in
front of the Zebra Zero. The extracted visual fea-
ture is the centroid coordinates of a red disc fixed on
the arm tip. The images of 640×480 [pixel] are ac-
quired using a Meteor frame-grabber (Matrox, Ltd.)
at 30 frames per second (FPS). The RGB image pro-
cessing is performed on a subwindow 100×100 [pixel]
wide. The first estimation of the centroid coordinates
is performed off-line using image subtraction.

In this preliminary experimental test, the visual
servoing loop was designed to perform the tracking
of a trajectory (straight-line) with 100 [pixel] length.
specified on the image plane, while the force control
loop regulates the contact force to 0.6 [kgf] along the
end-effector approach-axis. The contact surface was
the outer side of a wood plane. Thus, the experiment
also serves to evaluate the reorientation of the end-
effector during the task execution. Figure 3 describes
the time history of the image error, force error and
norm of orientation error respectively. Figure 4 shows
the end-effector trajectory performed on the unknown

planar surface in the image frame and robot frame.
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Figure 3: Image error, force error and norm of orien-
tation error.

8 Conclusion

This work has proposed a hybrid vision and force con-
trol method for the visual tracking of a desired tra-
jectory, while keeping the end-effector tip in orthogo-
nal contact with a smooth surface and exerting a pre-
scribed contact force. The camera parameters as well
as the surface geometry is supposed to be uncertain.

Adaptive visual servoing is proposed to cope with
the camera uncertainties and the reorientation scheme
for the end-effector is devised based on direct force
measurements, taking into account possible friction
force due to the contact with the surface. The sta-
bility analysis of the overall control system was pre-
sented. Simulation and experimental results show the
applicability of the proposed control scheme.
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Figure 4: End-effector trajectory in the image frame
and robot frame.

Future research topic following the ideas devel-

oped here is to relax the complete knowledge of the

robot kinematics and to include the effects of the non-

linearity and uncertainty in robot dynamics.
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